首页 - IT - Cisco认证 - 资讯 - 行业热点

德英两国科学家研制出全光学类脑计算芯片!

来源: 2019-05-10 编辑:

人工智能时代,某项技术可以像人脑一样工作,不再是遥不可及的梦想,例如智能手机已经能够识别人脸或者语言。



然而,当实现更加复杂的应用时,计算机仍然会迅速触及极限。其中一个原因就是,在传统的冯·诺依曼体系结构中,计算机的存储器和处理器是分开的,因此所有的数据必须在二者之间来回移动。



冯·诺依曼体系结构(图片来源:维基百科)


CPU的运算速度增长得较快,内存的访问速度增长得较慢,它们之间存在速度不匹配的问题,也就是所谓的“冯·诺依曼瓶颈”。这一瓶颈不仅限制了系统带宽,增加了系统功耗,也会进一步增加计算机的成本和体积。


为了突破这一瓶颈,科学家们希望从人脑结构中获取到灵感。人脑领先于最先进的现代计算机,因为它在同一个地方(神经突触,或者说神经元之间的连接)处理和存储信息,人脑中有数以百万亿的神经元。



生物神经网络中的神经元与突触(图片来源:Aleksandr Kurenkov 与 Shunsuke Fukami)


创新


近日,德国明斯特大学、英国牛津大学和埃克塞特大学成功开发出一种硬件,为创造类脑计算机铺平了道路。科学家们设法创造出一个含有人工神经元网络的芯片,这种人工神经元在光线的作用下工作,并能够模仿人脑神经元与突触的行为。



(图片来源:WWU - Peter Lemann)


研究人员已经能够证明,这种光学神经突触网络能够“学习”信息,并且使用它作为计算和模式识别的基础,就像大脑一样。因为这个系统仅过光线运作,而不是通过传统的电子运作,所以它处理数据的速度快许多倍。


明斯特大学教授、这项研究的首席合伙人沃尔夫拉姆·佩尼斯(Wolfram Pernice)表示:“这种集成化的光子系统是一个实验性的里程碑。以后,该方案可应用于许多不同领域,例如医疗诊断,以评估大数据中的模式。”这项研究发表在最近一期的《自然(Nature)》期刊上。



基于光线的脑启发芯片示意图。通过模仿生物神经元系统,光子神经形态处理器为应对机器学习和模式识别中的挑战,提供了一种有希望的平台。(图片来源:Johannes Feldmann)


技术


现有的大多数与所谓的“神经形态网络”相关的现有方案都是基于电子的。然而,采用光子或者说光粒子的光学系统,仍然处于初级阶段。



通过忆阻器阵列模仿神经元和突触的工作方式(图片来源:功能材料自旋电子学研究小组,格罗宁根大学)


德国与英国的科学家们采用的原理如下:可传输光线并制作到光学微芯片中的光波导与所谓的“相变材料”集成到一起,相变材料已经应用于如今的存储媒介,例如可重写的DVD。这些相变材料的特征是,根据它们是晶体(原子排列采用常规样式)还是无固定形状(原子排列采用非常规样式),它们会动态改变光学特性。


相关文章

推荐课程

商务合作

机构:白老师 186 1831 3709
企业:韩老师 139 1168 0967
邮箱:jijiao@eol.cn